Model

Model initialization and architecture.

The architecture of the interpretable autoregressive \(\beta\)-VAE works in the following manner: Given the displacements \(\mathbf{\Delta x}(t)\) of a diffusion trajectory, the encoder (orange) compresses them into an interpretable latent space (blue), in which few neurons (dark blue) represent physical features of the input data while others are noised out (light blue). An autoregressive decoder (green) generates from this latent representation the displacements \(\mathbf{\Delta x}'(t)\) of a new trajectory recursively, considering a certain receptive field RF (light green cone). Architecture

Initialization

As the architecture can be quite deep, a careful initialization is needed (see weight_init function in the model class). We initialize the weights with normal Kaiming init in fan_out mode, taking into account that we use the nonlinear activation function ReLU.


source

init_cnn


def init_cnn(
    m
):

Initialize weights with kaiming normal in fan_out mode and bias to 0

VAE

We implement a 1D convolutional variational autoencoder.

The latent neurons are probabilistic, i.e., they are sampled following a distribution. The reparameterization trick provides the means to allow backpropagation by externalizing the sampling noise.


source

reparameterize


def reparameterize(
    mu, # Mean of the normal distribution. Shape (`batch_size`, `latent_dim`)
    logvar, # Diagonal log variance of the normal distribution. Shape (`batch_size`, `latent_dim`)
): # Sampled latent `z` tensor as $z=\epsilon\sigma+\mu$

Samples from a normal distribution using the reparameterization trick.

We also take into account the sizes after n convolutions are applied to automate the model construction.


source

output_size_after_n_convt


def output_size_after_n_convt(
    n, input_size, kernel_size, stride:int=1, padding:int=0, output_padding:int=0, dilation:int=1
):

source

output_size_convt


def output_size_convt(
    input_size, kernel_size, stride:int=1, padding:int=0, output_padding:int=0, dilation:int=1
):

source

output_size_after_n_conv


def output_size_after_n_conv(
    n, input_size, kernel_size, stride:int=1, padding:int=0, dilation:int=1
):

source

output_size_conv


def output_size_conv(
    input_size, kernel_size, stride:int=1, padding:int=0, dilation:int=1
):

source

View


def View(
    size
):

Use as (un)flattening layer


source

VAEConv1d


def VAEConv1d(
    nf, # number of filters
    encoder, # list of Encoder's dense layers sizes
    decoder, # list of Decoder's dense layers sizes
    o_dim:int, # input size (T)
    nc_in:int=1, # number of input channels
    nc_out:int=6, # number of output channels
    z_dim:int=6, # number of latent neurons
    beta:int=0, # weight of the KLD loss
    avg_size:int=24, # output size of the pooling layers
    kwargs:VAR_KEYWORD
):

1-dimensional convolutional VAE architecture

VAE + WaveNet

We implement an extensible version of a VAE with WaveNet as the autoregressive decoder.


source

sample_from_mix_gaussian


def sample_from_mix_gaussian(
    y, # Mixture of Gaussians parameters. Shape (B x C x T)
    log_scale_min:float=-12.0, # Log scale minimum value.
In many other implementations this variable is never used.
):

Sample from (discretized) mixture of gaussian distributions


source

DilatedCausalConv1d


def DilatedCausalConv1d(
    mask_type, in_channels, out_channels, kernel_size:int=2, dilation:int=1, bias:bool=True, use_pad:bool=True
):

Dilated causal convolution for WaveNet


source

ResidualBlock


def ResidualBlock(
    res_channels, skip_channels, kernel_size, dilation, c_channels:int=0, g_channels:int=0, bias:bool=True,
    use_pad:bool=True
):

Residual block with conditions and gate mechanism


source

VAEWaveNet


def VAEWaveNet(
    in_channels:int=1, # input channels
    res_channels:int=16, # residual channels
    skip_channels:int=16, # skip connections channels
    c_channels:int=6, # local conditioning
    g_channels:int=0, # global conditioning
    out_channels:int=1, # output channels
    res_kernel_size:int=3, # kernel_size of residual blocks dilated layers
    layer_size:int=4, # Largest dilation is 2^layer_size
    stack_size:int=1, # number of layers stacks
    out_distribution:str='normal', discrete_channels:int=256, num_mixtures:int=1, use_pad:bool=False,
    weight_norm:bool=False, kwargs:VAR_KEYWORD
):

VAE with autoregressive decoder

We can create a model by specifying its parameters in a dict.

model_args = dict(# VAE #########################
                  o_dim=400,
                  nc_in=1, nc_out=6,
                  nf=[16]*4,
                  avg_size=16,
                  encoder=[200,100],
                  z_dim=6,
                  decoder=[100,200],
                  beta=0,
                  # WaveNet ########
                  in_channels=1,
                  res_channels=16,skip_channels=16,
                  c_channels=6,
                  g_channels=0,
                  res_kernel_size=3,
                  layer_size=4,  # 6
                  stack_size=1,
                  out_distribution= "Normal",
                  num_mixtures=1,
                  use_pad=False,
                  model_name = 'SPIVAE',
                 )
model = VAEWaveNet(**model_args)

Printing the model object will reveal the declared layers.

model
VAEWaveNet(
  (vae): VAEConv1d(
    (encoder): Sequential(
      (0): Conv1d(1, 16, kernel_size=(3,), stride=(1,))
      (1): ReLU(inplace=True)
      (2): Conv1d(16, 16, kernel_size=(3,), stride=(1,))
      (3): ReLU(inplace=True)
      (4): Conv1d(16, 16, kernel_size=(3,), stride=(1,))
      (5): ReLU(inplace=True)
      (6): Conv1d(16, 16, kernel_size=(3,), stride=(1,))
      (7): ReLU(inplace=True)
      (8): AdaptiveConcatPool1d(
        (ap): AdaptiveAvgPool1d(output_size=16)
        (mp): AdaptiveMaxPool1d(output_size=16)
      )
      (9): View()
      (10): Linear(in_features=512, out_features=200, bias=True)
      (11): ReLU(inplace=True)
      (12): Linear(in_features=200, out_features=100, bias=True)
      (13): ReLU(inplace=True)
      (14): Linear(in_features=100, out_features=12, bias=True)
    )
    (decoder): Sequential(
      (0): Linear(in_features=6, out_features=100, bias=True)
      (1): ReLU(inplace=True)
      (2): Linear(in_features=100, out_features=200, bias=True)
      (3): ReLU(inplace=True)
      (4): Linear(in_features=200, out_features=512, bias=True)
      (5): ReLU(inplace=True)
      (6): View()
    )
    (convt): Sequential(
      (0): ConvTranspose1d(16, 16, kernel_size=(3,), stride=(1,))
      (1): ReLU(inplace=True)
      (2): ConvTranspose1d(16, 16, kernel_size=(3,), stride=(1,))
      (3): ReLU(inplace=True)
      (4): ConvTranspose1d(16, 16, kernel_size=(3,), stride=(1,))
      (5): ReLU(inplace=True)
      (6): ConvTranspose1d(16, 6, kernel_size=(3,), stride=(1,))
      (7): ReLU(inplace=True)
    )
  )
  (init_conv): Conv1d(1, 16, kernel_size=(1,), stride=(1,))
  (causal): DilatedCausalConv1d(
    (conv): Conv1d(16, 16, kernel_size=(2,), stride=(1,))
  )
  (res_stack): ModuleList(
    (0): ResidualBlock(
      (dilated): DilatedCausalConv1d(
        (conv): Conv1d(16, 32, kernel_size=(3,), stride=(1,))
      )
      (conv_c): Conv1d(6, 32, kernel_size=(1,), stride=(1,), bias=False)
      (conv_res): Conv1d(16, 16, kernel_size=(1,), stride=(1,))
      (conv_skip): Conv1d(16, 16, kernel_size=(1,), stride=(1,))
    )
    (1): ResidualBlock(
      (dilated): DilatedCausalConv1d(
        (conv): Conv1d(16, 32, kernel_size=(3,), stride=(1,), dilation=(2,))
      )
      (conv_c): Conv1d(6, 32, kernel_size=(1,), stride=(1,), bias=False)
      (conv_res): Conv1d(16, 16, kernel_size=(1,), stride=(1,))
      (conv_skip): Conv1d(16, 16, kernel_size=(1,), stride=(1,))
    )
    (2): ResidualBlock(
      (dilated): DilatedCausalConv1d(
        (conv): Conv1d(16, 32, kernel_size=(3,), stride=(1,), dilation=(4,))
      )
      (conv_c): Conv1d(6, 32, kernel_size=(1,), stride=(1,), bias=False)
      (conv_res): Conv1d(16, 16, kernel_size=(1,), stride=(1,))
      (conv_skip): Conv1d(16, 16, kernel_size=(1,), stride=(1,))
    )
    (3): ResidualBlock(
      (dilated): DilatedCausalConv1d(
        (conv): Conv1d(16, 32, kernel_size=(3,), stride=(1,), dilation=(8,))
      )
      (conv_c): Conv1d(6, 32, kernel_size=(1,), stride=(1,), bias=False)
      (conv_res): Conv1d(16, 16, kernel_size=(1,), stride=(1,))
      (conv_skip): Conv1d(16, 16, kernel_size=(1,), stride=(1,))
    )
  )
  (out_conv): Sequential(
    (0): ReLU(inplace=True)
    (1): Conv1d(16, 16, kernel_size=(1,), stride=(1,))
    (2): ReLU(inplace=True)
    (3): Conv1d(16, 9, kernel_size=(1,), stride=(1,))
  )
)

Training example

With the data and the model, we can already start training.

DEVICE= 'cpu' # 'cuda'
print(DEVICE)
cpu
N=6_000
Ds = np.linspace(2e-5,2e-2,5)
alphas = np.linspace(0.2,1.8,9)
n_alphas,n_Ds = len(alphas), len(Ds)
ds_args = dict(path="../../data/raw/", model='fbm', # 'sbm'
               N=int(N/n_alphas/n_Ds*2), T=400,
               D=Ds, alpha=alphas,seed=0,
               valid_pct=0.2, bs=2**8,
               N_save=N, T_save=400,
              )
model_args = dict(# VAE ###########################
                  o_dim=ds_args['T']-1,
                  nc_in=1, nc_out=6,
                  nf=[16]*4,
                  avg_size=16,
                  encoder=[200,100],
                  z_dim=6,
                  decoder=[100,200],
                  beta=0,
                  # WaveNet ########
                  in_channels=1,
                  res_channels=16,skip_channels=16,
                  c_channels=6,
                  g_channels=0,
                  res_kernel_size=3,
                  layer_size=4,  # 6  # Largest dilation is 2**layer_size
                  stack_size=1,
                  out_distribution= "Normal",
                  num_mixtures=1,
                  use_pad=False,
                  model_name = 'SPIVAE',
                 )
dls = load_data(ds_args)
model = VAEWaveNet(**model_args).to(DEVICE)
loss_fn = Loss(model.receptive_field, model.c_channels, 
               beta=model_args['beta'], reduction='mean')
learn = Learner(dls, model, loss_func=loss_fn,)
E=4
learn.fit_one_cycle(E, lr_max=1e-4)
epoch train_loss valid_loss time
0 0.982180 0.949590 00:28
1 0.934559 0.880010 00:25
2 0.882010 0.822553 00:26
3 0.843744 0.810182 00:29